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When applied to non-exact (noisy) data, numerical methods for calculating derivatives, ir. 
particuiar derivatives of order higher than the first, based on model functions fitted to exact 
data, become unsatisfactory . The spectra) smoothing method of Anderssen and Bloomfield. 
developed to solve this problem, entails calculation of a smoothing parameter and the choice 
of an optimal-order Sobolev norm that is used as regularizer. This method is used :o differen 
tiate, smooth and integrate noisy data. A likelihood function is minimized to determine the 
smoothing parameter. We present numerical results suggesting that this function can be jointly 
minimized with respect to the smoothing parameter and the order of the regularizing norm. 
thus yielding a fully automatic numerical differentiation procedure. 

1. INTRODUCTION 

The problem of finding the nth derivative f(-) of a function g( .), i.e., 

f(t) = g’“‘(t), to<t<T, n> I, (1.1) 

can be formulated in terms of integrals. Assuming that we know the lower-order 
derivatives at t = t,? we may use Taylor’s theorem with remainder to define 

n -- 1 

G(t) := g(t) - x (t - Qk g’k’(t,)/k! 
k=O 

with 

= 1’ (t - ?)“-I g’“‘(r)/(n - I)! dz. 
’ 10 

G’“‘(r) = g’“‘(t) and Gck)(t ) = 0 0 < k < n - 1. 0 ,\\ (1.2) 

The problem of solving (1.1) is therefore transformed to that of solving the Volterra 
integral equation of the first kind 

D,f 1 (t) :=I’ (t - T)~-’ f (r)/(n - l)! dr = G(t), 
10 
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(1.3) 
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since (1.2) implies that G(a) and g(.) are equivalent modulo a polynomial of degree 
(n - 1). This is a special form of the more general Fredholm integral equation of the 
first kind 

Kf 1 (t) := jr K(t, z) f(s) dz = G(t), 4, < t < T, (1.4) 
to 

with the difference kernel 

K(t, r) = (t - r)“- ‘/(n - l)! , &<r<t,<T, 

= 0, t,<t<r<T. 
(1.5) 

The problem of solving (1.3) or (1.4) for the unknown function f( .) is known to be 
ill-posed (cf. [3, 71) in the sense that, even if a solution exists, it need neither be 
unique nor depend continuously on the right-hand side (data). This implies that small 
inaccuracies (noise) in the data can lead to calculated “solutions” that do not approx- 
imate the exact solution in any sense. 

The degree of smoothness of the kernel plays an important role in numerical 
procedures for solving integral equations of the first kind (cf. [4,6]). For example, if 
the kernel approximates the Dirac delta generalized function, discretization of (1.4) 
yields a diagonally dominant coefficient matrix, and inversion presents no problems. 
If the kernel is constant, however, the discretization matrix will have a rank of one 
since all its rows are identical. The value of n (the order of the derivative) determines 
the smoothness of the kernel (1.5): the problem will become progressively more ill- 
conditioned as n increases. 

2. REGULARIZATION 

If an ill-posed problem such as (1.3) is to be regularized, this means simply that it 
is to be replaced by a problem that is well-posed (has a unique solution that depends 
continuously on the data) and is such that its solution3(.) approximates the function 
f(.) in some satisfactory way, usually in L*-norm, i.e., 

II3- fll’ := f- ($@I - fW* dr < ~3 
to 

(2.1) 

for given small E > 0. We assume that f(.) is an element of the Sobolev space 
H”‘l to, T], i.e., 

(2.2) 

for some positive integer value of m. 
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One way of regularizing (1.3) is discussed in (71, where it is shown that for values 
of a in a restricted interval (p,,&) dependent on E, the (unique) solutionf,(.) of the 
optimization problem 

inf illD,S - Gil’ + a llfll’,h 0 < B,(E) < a < P2(c) < i, 
/E?P 

(2.3) 

will have the desired property (2.1). Standard results of the calculus of variations 
then requireJ,(.) to be a solution of the integro-differential equation 

D;(D,f-G)+a i: (-I)kf(2k)=0: 
k=O 

(2.4) 

where D,* denotes the adjoint operator of D,, and in this case has the form 

D;g((t):= [‘(r-l)“-‘g(r)/@- l)!dr. (2.5) 
‘t 

The boundary conditions associated with (2.4) are 

f (m+i)(fo) f (-l)if(m-i)(t,) =f(m+iJ(q + (-l)if(m-i)(q = ot O<i<n?-- 1. 
(2.5) 

Eq. (2.4) is no longer ill-posed. Cullum [3] shows, for instance, that with n = i, the 
equation can, using Green’s functions, be transformed to a (well-posed) integral 
equation of the second kind. However, the process of solving this transformed 
equation for a given value of a, although numerically stable, requires more 
computations than the procedure described below (cf. [ 1 I), and the optimal value of a 
still has to be estimated in some way. 

3. THE ANDERSSEN-BLOOMFIELD (A-B) APPROACH 

Equation (2.4) can be expressed in the form 

\I’ y (r2 - t)“-‘(7, - q-’ f(r,)/((n - l)!)2 dr, dr, + a ? (-1)kf’2k)(fj 
-: .11” hZ0 

= [T(r-yl G(s)/@ - l)! dr. (3.1.) 

Differentiation of (3.1) 2n times with respect to the variable t yields the (2m + 2n)th- 
order differential equation 

f(t) + a 2 (-l)n+k f (*n+yf) = g’“‘(t)? 
k :- 0 

(3.2) 
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with the boundary conditions (additional to (1.2) and (2.6)) 

= 0, O(i<n-1. (3.3) 

Additional terms in (3.1), used in 1 I-31 to enforce boundary conditions, have been 
omitted for convenience, as they do not affect (3.2) and (3.3). 

To simplify the series representation of the solution and data, the function g(.) 
underlying the data is detrended, i.e., we assume that the data at the endpoints are 
accurate, and subtract a linear function from g(.) to ensure that g(t,,) = g(T) = 0. 
Where necessary, corresponding adjustments will have to be made to solutions. It 
follows that g(e) may be expanded in a Fourier sine series 

where 

g(f) = ,g, Yj sin 4ji'7 (3.4) 

(zij := nj/( T - I”). 

By substitution in (3.2) it is possible to show formally that the solution is given by 

f(f) = f y,w,# sin (@,I’ + 7)’ 
j=l 

where 

iv,- 1 := 

(3.5) 

(3.6) 

The regularizing procedure therefore produces weighting factors lvj which act on 
the Fourier coefficients ‘/I of the data. The convergence of the expansion (3.4) and 
therefore the number of terms to be retained for calculating approximate solutions, is 
adversely affected by the presence of noise in the data. The weight-function serves to 
counteract this effect. 

When g(.) is represented by N discrete equispaced point values, we can construct a 
finite Fourier series corresponding to (3.4) by assuming an odd extension of the data, 
with the regularized mh derivative given by the corresponding finite form of (3.5). 
Fast Fourier transforms (FFTs) can then be used to calculate y,, which makes the 
algorithm computationally efficient. The value of the regularizing constant a to be 
used in the computations may be selected, as is shown in [ 1,2), by interpreting it as 
a parameter in a statistical model, and calculating its maximum likelihood estimate. 
This is found by minimizing the following likelihood function with respect to a: 

@(a; m, n) := (N - 1) In (“F’ $( 1 - 6,)) - ‘i’ ln( 1 - Gj). (3.7) 
,T, / -1 
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Here the 7, are the FFT-calculated approximations to the Fourier coefficients yj of the 
data, and the Zj are the finite equivalents of w,, i.e.. with 4, replaced by 

q& := nj/(N - 1). 

It is in this context that the value of a used in the calculations is considered to be 
optimal. The likelihood function (3.7) is derived under the assumption of uncorrelated 
errors each following the same Gaussian distribution. However, as is indicated in [ 8 1; 
the expression (3.7) is asymptotically valid for large N under considerably reLaxed 
conditions. In particular, the errors need only have zero mean. constant finite 
variance and be uncorrelated. Constants in (3.7) that do not influence the 
optimization have been omitted, so that this expression differs slightly from those 
used in [ 1, 2, 5 i. 

Although Eqs. (3.2) to (3.7) inclusive were derived for n > 1, the same approach is 
feasible for z = 0 (as noted in [ 1 I), in which case D, = I, the identity operator, and 
an optimally smoothed form of the data is obtained. For negative values of n, say 
;2 .= -v. we can interpret D _ ,,f as f (“‘(.) in (2.3), and f (.) as the vth indefinite integral 
of the data g(.). 

Although integration is a smoothing process, and noise in the data. wili seldom 
cause problems, it is of some interest to note that the A-B procedure can be used LO 
difTerentiate, smooth and integrate noisy data optimally (in the present context). For 
example, the acceleration, smoothed velocity and displacement of some motio;l 
represented by velocity measurements may be calcuiated by using n = 1, G anti -.-. I. 
respectively. 

Where integration is performed, some care has to be taken with adjustments oi 
solutions necessitated by detrending the data, and in the chcice of m, the order of ?hc 
regularizing Sobolev norm. These points will be discussed in more detaii in Section 5. 
A!so, although the boundary conditions (1.3), (2.6) and (3.3) have to be satis5ed 
theoretically. this wiil seldom (if ever!) be true in practice. Function estimates riear 
:he endpoints of the data interval should therefore be treated with caution, 

4. APPLICATIONS 

In the following applications the data represent the functions 

gijCf) := giCf) + &j df)l o<t< 1, j=o, !,2:3, I4.1) 

where gJt> is a given test function, r(t) is an error function uniformly distributed over 
(-1, I), and 

I 

0.0, j= 0, 

‘jIgi 
0.01, 

max := 0.05, 
j= I1 
j= 2. 

I 0.1, j= 3, 
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where 

This allows for maximum errors in the data of 0, 1, 5, and IO%, respectively. The 
two test functions considered are 

g,(f) := sin nt, 

g*(t) := 3et’ In( l/t). 

The constant 3e in g*(s) is introduced to ensure that gimax = 1. Detrending is 
unnecessary since g,(O) = gi( 1) = 0. 

For the function g,(e) derivatives of all orders are bounded, while for gZ(.) only the 
first and second derivatives are bounded. 

As in the preceding sections, n determines the operation to be performed on the 
data, m is the order of the regularizing Sobolev norm, and N is the number of data 
points. 

The values of n, m and N belonged to the sets (-2, -1, 0, 1,2}, { 1,2,3,4, 5, 6} 
and { 26, 5 1, 101,201}, respectively. To exclude endpoint effects, the first and last 
truncated tenth of the N data points used in solution calculations were ignored in 
error calculations. 

The following two criteria for the accuracy of the computed solutions were used. 
Let S denote the set of m data points {t,} used for error calculations,f(.) the exact 
solution for no noise and with maximum absolute valuef,,,, and fl.) the computed 
solution. Then 

All numerical calculations were done on a CDC Cyber 174 computer. The notation 
aEb denotes a . 10”. 

5. DISCUSSION OF RESULTS 

As it is impossible to give a full account of the results obtained, only general 
trends observed will be discussed, and the effect emphasized of changes in the order 
of the regularizing norm, which in practice will be the only parameter choice left to 
the user of the algorithm. This implies that we are in effect looking for an optimal 
Sobolev regularizer for the numerical differentiation problem. A study by Cullum [ 4 1 
of the effects of using various smoothing norms for ill-posed problems shows the 
importance of estimating how appropriate any proposed regularizer actually is. 
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TABLE I 

Effect of Changes in N on Errors E, and E, 

(gij, W n) N E: E, 

(tT12.1~0) 26 
51 

101 
201 

(&I, 3, 1) 26 
51 

101 
201 

C&,9 2,3) 26 
51 

101 
201 

0.308 E - 1 
0.283 E - 1 
0.222 E - I 
0.159 E - i 

0.111 E- 1 
0.456 E - 2 
0.513 E - 2 
0.320 E - 2 

0.128 0.428 
0.713 E- I 0.234 
0.574 E - 1 0.188 
0.479 E - 1 0.!28 

0.493 E - 1 
0.493 E - ! 
0.417 E- 1 
0.404 E - I 

0.387 E - 1 
0.151 E- 1 
0.115 E- 1 
0.808 E - 2 

5.1. For most functions g, with fixed smoothing norm and for a specified 
operation (i.e., values of n), both error measures E, and E, decreased with an 
increase in the number of data points. Some results are given in Table I, and the 
general nature of these could have been expected from the nature of the estimation of 
6 and c?, the optimal values of the likelihood function and the smoothing parameter, 
respectively. Note that an increase in the number of observations may imply that E, 
and/or E, for f E gi and 33 g,j increase, so that an improvement in the calculated 
solution need not always follow, even though the error amplitude E, is kept constant, 
However, in contrast to the instability of finite difference or curve-fitting methods 
when intervals between noisy data decrease, error fluctuations are random in nature: 
and stable. 

5.2. The optimal values a’ and 6 of the smoothing parameter and the likelihood 
function, for each function gij represented by a fixed number of data points, depended 

I strongly on tm $ n), i.e., the norm of the highest derivative in (2.2) dominated the 
Sobolev norm for these examples, as shown in Table 11. For fixed (m + n), only- sligm 

TABLE II 

Dependence of 6 and (P on (tn + n) 

cgi21511 4 0.714 E - 8 -0.169 E3 

(gl3.201) 6 0.524 E - 10 -0.i51 E3 

(g,, t 26) 3 0.733 E - 9 -0.125 E3 

(g,,. 101) 2 0.316E-6 -0.256 E3 

(&,,51) 5 0.537 E - 11 ---0.886 E2 
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variations in a’ occurred, e.g., in the case gZz, n=lOl,m+n=2,thevaluesof&for 
n = -1, m = 3 and n = -2, m = 4 differed by less than 1%. This seems to indicate 
that (2.2) can be replaced by JlfCm)()* as regularizer. The weights G, will of course be 
different. The effect on the accuracy of the solutions has not been investigated. 
Although the applicability of the A-B algorithm to numerical integration is academic 
rather than practical, this phenomenon means that, for n = -v, m has to be so chosen 
that (m + n) = (m - V) > 0; otherwise the optimization of (3.7) leads to problems. 
For instance, with m + n = 0 and using (3.6) we have the “equivalent” form of (3.7) 

@(a;O,O)=(N- I)ln (li: a$/( 1 + ~2)) - ‘Ii: ln(a/( 1 + a)) 

N - I 

=(N-- I)ln ,s, ?j, 

which is independent of a, and therefore cannot be optimized. This appeared in the 
numerical experiments as spurious convergence to optimal values of a’> 1, and large 
positive values of &:. 

5.3. When the noise amplitude was the only parameter allowed to vary, the 
optimal value a’ increased with increasing noise amplitude sj, which means that, as is 
to be expected, more smoothing is required for larger inaccuracies in the data 
(Table III). 

On the other hand, when n was allowed to vary, for a specific data set (gij, N) 
with fixed regularizer, the optimal value a’ of the smoothing parameter decreased with 
increase in n. This is misleading, because although a’ might decrease, the increase in n 
dominates the weights G,, so that more smoothing of the Fourier coefficients of the 
data does in fact take place for the optimal calculation of higher derivatives. Figure 1 
shows the extent of the spectral smoothing for the function g, *, with the third-order 
Sobolev norm as regularizer and 51 representative data points. When one integration 
of the data is performed (n = -I), very little smoothing is required compared with 
that needed to compute the second derivative (n = 2), even though the optimal 
smoothing parameter a” is now much smaller. 

TABLE III 

Changes in a with Increased Noise 

(&,3 m, “7 NJ fi(j=O) c?(j= 1) Z(j=2) C(j-3) 
-~ 

CR,,, 2, 17 51) 0.199E-36 0.652 E-8 0.964 E - 7 0.296 E - 6 
(g,,, 13 2, 101) 0.300E-38 0.360 E - 8 0.512 E- 1 O.l35E-6 
(gZj3 3, 2. 51) O.l60E-- 19 0.264E- 14 0.421 E - 12 0.537E-11 
(gz,. 2, 1, 101) 0.299E-39 0.920E- 10 0.308 E - 8 0.149 E -1 
(SZj. 39 2* 201) 0.207E-25 0.151 E- 15 0.579E- 13 0.518 E .- 12 
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FK;. 1. Ircrcase of spectral smoothing for higher deriwtives. Example: g!,. N = 51, vz -- 3. 
(.v,)n=-l (CT-0.18E -5); (t()n=O (C=0.96E-7); (x)rr=Z (6:=O.M.--9). 

The same effect can be seen when the order of the smoothing norm is a!lowed to 
increase for a required operation (fixed n) to be performed on a given dara set 
(gij. N). Once again, the optimal value a’ of the smoothing parameter decreases, but 
coefficients are smoothed to a greater extent. Figure 2 shows the spectral smoothing 
required to calculate the second derivative of the function gZZ, using 51 data points 
and Soboiev regularizers of increasing order. Aithough the value of a’ decreases to 
almost zero (machine accuracy) for the fourth-order reguiarizer, increasingly greater 
spectral smoothing does in fact take place. Changes in the value of 6 therefore cannot 
be considered an indication of the extent of smoothing of the data. 

5.4. As mentioned in Subsection 5.3, higher-order regularizers, for a given data 
set ( g,j, N) and for a particular required operation on this set (i.e., a given value of n? 
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FIG. 2. Increase of spectral smoothing for higher-order norms. Example: g,,, N= 5 I, n = 2. 
(x)m= 1 (C=0.75E-8); ((9)m=2 @=0.63E- 10); (a)m=3 @=0.42E- 12): (*)m=4 
(ii = 0.26 E - 14). 

result in greater smoothing of the data. Obviously this can lead to oversmoothing, 
and the question remains unresolved as to whether the likelihood function CD can be 
minimized with respect to m, the order of the Sobolev norm, as well as with respect 
to the smoothing parameter a; in other words, it is not yet clear whether 9, the value 
of the likelihood function for optimal a, can be used as a criterion to determine an 
optimal smoothing norm. 

For the test functions g,j, with bounded derivatives of all orders, the values & as 
well as E, and E, decreased steadily for increasing m, for all data sets and all 
required operations. For these examples therefore a decrease in 6 does indicate better 
approximate solutions. For g,, however, with I( g”‘+‘“)([ infinite for (n + m) 2 4, & 
did not decrease monotonically with m. Although slight improvements in E, and/or 
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TABLEIV 

Changes in 6 wilh Increase in m 

(g,. n. N m Q x 10-l E* EL 
--- ______ --- .-.--- -- .-- ---- 

(g,,, 2, 101) 3 -0.284 0.703 E - 2 O.llOE- ! 
4 -0.286 0.597 E - 2 0.968 E - 2 
5 -0.287 0.570 E - 2 0.923 E - 2 
6 -0.288 0.540 E - 2 0.824 E .- 2 

(g,!. 1351) 1 -0.265 0.217 E- 1 0.471 E -- 1 
2 -0.276 0.679 E - 2 0.131 E - 1 
3 -0.269 0.456 E -- 2 0.151 E- 1 
4 -0.259 0.554 E - 2 0.259 E - 1 

(&3,.x 201) 1 -0.133 0.683 E --. 1 0.147 
2 -0.132 0.479 E -- 1 0.128 
3 -0.128 0.477 E - 1 0.15c 
4 -0.123 0.5!9 E - 1 0.160 

E, occasionally still occurred for (n + M) > 4, this was the exception rather than the 
rule. and & increased in value for larger values of m. (See Table IV.) 

It may be accepted that E, and E, are less sensitive to increases in the vaiue of m. 
and although an increase in 6 does not necessarily mean an immediate deterioration 
in the accuracy of the computed solution, it does serve as a warning that higher 
values of m might not be advisable. The numerical results obtained therefore indicate 
that the likelihood function (3.7) can be minimized with respect to the order of the 
Soboiev norm used as regularizer as well as with respect to the smoothing parameter. 
Furthermore, the optimal regularizer depends on the operation to be performed on the 
data, i.e., on the kernel of the integral equation (cf. 14)). 
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